Dear Visitor,

Our system has found that you are using an ad-blocking browser add-on.

We just wanted to let you know that our site content is, of course, available to you absolutely free of charge.

Our ads are the only way we have to be able to bring you the latest high-quality content, which is written by professional journalists, with the help of editors, graphic designers, and our site production and I.T. staff, as well as many other talented people who work around the clock for this site.

So, we ask you to add this site to your Ad Blocker’s "white list" or to simply disable your Ad Blocker while visiting this site.

Continue on this site freely
  HOME     MENU     SEARCH     NEWSLETTER    
TECHNOLOGY, DISCOVERY & INNOVATION. UPDATED 5 MINUTES AGO.
You are here: Home / Science News / Scientists Get Antimatter Excited
Scientists Get Antimatter Excited, See First Light
Scientists Get Antimatter Excited, See First Light
By Frank Jordans Like this on Facebook Tweet this Link thison Linkedin Link this on Google Plus
PUBLISHED:
DECEMBER
20
2016

Scientists have used a laser to tickle atoms of antimatter and make them shine, a key step toward answering one of the great riddles of the universe.

Theory predicts that the Big Bang produced equal amounts of matter and antimatter. Since they cancel each other out, scientists have been trying to find out why a relatively small amount of matter remained -- allowing the stars, planets and ultimately life as we know it to come about -- and antimatter vanished.

It took researchers at the European Organization for Nuclear Research, or CERN, decades to figure out how to create an antimatter version of the most basic atom -- hydrogen-- and trap it for long enough to perform tests.

In a paper published online Monday by the journal Nature, they reported the first cautious result from an experiment with antihydrogen. It turns out that when it's stimulated with a laser, antihydrogen appears to produce light on the same ultraviolet frequency as its nemesis in the world of matter, hydrogen.

Adding energy -- in this case with a laser -- to atoms to see what light they absorb and emit is known as spectroscopy. It is a commonly used tool in physics, chemistry and even astronomy, to determine the atomic composition of substances in a lab or even far-away galaxies. The results can be presented as rainbow-like panels or as graphs showing the distribution of certain colors.

"What we have is one color," said Jeffrey Hangst, a leading member of the team working on the ALPHA experiment at CERN , which is located on the Swiss-French border. "But it's kind of the most fundamental one because it's the one that we can measure most accurately."

Hangst and his colleagues now plan to refine the experiment, using techniques developed for hydrogen over the past 200 years, to map in precise detail the atomic spectrum of antihydrogen.

"All we've done so far is find the top of the hill, now we want to measure the shape of the hill," he told The Associated Press.

Guido Drexlin, a physicist at the Karlsruhe Institute of Technology who wasn't involved in the study, said scientists had been eagerly awaiting the results of the CERN experiment for years. "They are on a good track," he said.

Successfully discovering a difference between matter and antimatter would be worthy of a Nobel Prize, said Drexlin. "The differences between matter and antimatter are extremely subtle," he said. "There is a slight preference for matter and we would like to know why."

Hangst, who is also at Aarhus University in Denmark, said the team at CERN is working on new experiments, including one that looks at how antihydrogen is affected by gravity.

"We're going to make a machine that's vertical, and then we're going to trap antihydrogen and drop it," he said.

One of the great hurdles for researchers is the fact that producing antihydrogen is still a painstaking process that yields just over a dozen atoms each time.

But Hangst said the team has come a long way since it proposed the experiment some 20 years ago, including in the eyes of some peers.

"There was a time when this was kind of the lunatic fringe of physics," he said.

© 2017 Associated Press under contract with NewsEdge/Acquire Media. All rights reserved.
Tell Us What You Think
Comment:

Name:

joseph:
Posted: 2017-01-01 @ 4:11am PT
tickling with eternity?

Tammy:
Posted: 2016-12-26 @ 7:34am PT
Just so you know, "staff approval" is censoring.
Monitoring is censoring.

However, I neglected to say, the Antimatter story was well done (as was the 3 embryos article), even though many of us believe that what these scientists are doing is super dangerous for all of us, I still like to keep up to date on what these scientists are up to. Thank you for SCI-TECH TODAY.

Tammy:
Posted: 2016-12-26 @ 7:20am PT
GOD HELP US AND SAVE US FROM STUPID AND EVIL MANKIND!!

Like Us on FacebookFollow Us on Twitter
MORE IN SCIENCE NEWS
SCI-TECH TODAY
NEWSFACTOR NETWORK SITES
NEWSFACTOR SERVICES
© Copyright 2017 NewsFactor Network. All rights reserved. Member of Accuserve Ad Network.