Dear Visitor,

Our system has found that you are using an ad-blocking browser add-on.

We just wanted to let you know that our site content is, of course, available to you absolutely free of charge.

Our ads are the only way we have to be able to bring you the latest high-quality content, which is written by professional journalists, with the help of editors, graphic designers, and our site production and I.T. staff, as well as many other talented people who work around the clock for this site.

So, we ask you to add this site to your Ad Blocker’s "white list" or to simply disable your Ad Blocker while visiting this site.

Continue on this site freely
  HOME     MENU     SEARCH     NEWSLETTER    
TECHNOLOGY, DISCOVERY & INNOVATION. UPDATED 3 MINUTES AGO.
You are here: Home / Science & Discovery / Thylacine DNA Reveals Secrets
Thylacine DNA Reveals Secrets and Hidden Weakness
Thylacine DNA Reveals Secrets and Hidden Weakness
By Michael McGowan Like this on Facebook Tweet this Link thison Linkedin Link this on Google Plus
PUBLISHED:
DECEMBER
11
2017
The first full genetic blueprint of the long-extinct thylacine has revealed the animal suffered from genetic weakness well before it was isolated on Tasmania 10,000 to 13,000 years ago.

An international team of researchers led by associate professor Andrew Pask from the University of Melbourne used DNA from the 106-year-old preserved remains of a juvenile thylacine or Tasmanian tiger to sequence the animal's genome, making it one of the most complete genetic blueprints for an extinct species.

Their findings, published in the journal Nature, provide new information on the biology of the unique marsupial and reveal that the population was in danger long before it came in contact with humans.

"We've always known that the Tasmanian tiger did not have much genetic diversity, so it would be more susceptible to diseases," he said.

"It's very much like the Tasmanian devil in that respect and we've always thought that happened once it became isolated on Tasmania between 10,000 and 15,000 years ago.

"But what we found is that the population declined about 70,000 years ago, long before it was isolated meaning it probably had more to do with changes in the climate back then."

While overhunting was "without doubt" responsible for the animal's extinction in 1936, Pask said its genetic weakness would have made it more susceptible to disease had it survived.

He said that while researchers were still a long way from bringing the animal back from extinction it was a "major hurdle" cleared. The information could help efforts to protect the Tasmanian devil because researchers could use it to infer what a healthy marsupial's genome should look like.

The researchers also found that despite its similarities to the Australian dingo, the thylacine's DNA actually has more in common with the kangaroo.

Scientists consider the thylacine and the dingo as one of the best examples of what's known as "convergent evolution," the process where organisms that are not closely related independently evolve to look the same as a result of having to adapt to similar environments or ecological niches.

Because of their hunting technique and diet of fresh meat, their skulls and body shape became similar despite the Tasmanian tiger's DNA having more in common with a kangaroo.

Pask said the genome showed the Tasmanian tiger was an "unbelievable" example of convergent evolution, because it proved how distant the two species were.

Related: Life in the old bird yet: study of dodo bones yields new biological insights

"Their similarities are absolutely astounding because they haven't shared a common ancestor since the Jurassic period, 160m years ago," he said.

"The appearance of the thylacine is almost a dingo with a pouch. And when we looked at the basis for this convergent evolution, we found that it wasn't actually the genes themselves that produced the same skull and body shape, but the control regions around them that turn genes 'on and off' at different stages of growth.

"This reveals a whole new understanding of the process of evolution, we can now explore these regions of the genome to help understand how two species converge on the same appearance, and how the process of evolution works."

© 2018 Guardian Web under contract with NewsEdge/Acquire Media. All rights reserved.

Image credit: iStock.

Tell Us What You Think
Comment:

Name:

Like Us on FacebookFollow Us on Twitter
MORE IN SCIENCE & DISCOVERY

NETWORK SECURITY SPOTLIGHT
Fewer than one in 10 active Gmail users have enabled two-factor authentication, a free security measure meant to protect accounts against unauthorized access, a Google software engineer says.
SCI-TECH TODAY
NEWSFACTOR NETWORK SITES
NEWSFACTOR SERVICES
© Copyright 2018 NewsFactor Network. All rights reserved. Member of Accuserve Ad Network.